
International Journal of Multiphase Flow 36 (2010) 738–754
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/locate / i jmulflow
Performance comparison of artificial neural networks and expert systems applied
to flow pattern identification in vertical ascendant gas–liquid flows

E.S. Rosa a,*, R.M. Salgado b, T. Ohishi c, N. Mastelari a

a Mechanical Engineering Faculty, State University of Campinas, São Paulo, Brazil
b Exact Science Department, Federal University of Alfenas, Minas Gerais, Brazil
c Electrical and Computer Engineering Faculty, State University of Campinas, São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 December 2009
Received in revised form 27 April 2010
Accepted 3 May 2010
Available online 7 May 2010

Keywords:
Flow pattern recognition
Clustering algorithms
Neural networks
Impedance sensor
0301-9322/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2010.05.001

* Corresponding author. Tel.: +55 019 3521 3268; f
E-mail address: erosa@fem.unicamp.br (E.S. Rosa).
Instantaneous readouts of an electrical resistivity probe are taken in an upward vertical air–water
mixture. The signals are further processed to render the statistical moments and the probability density
functions here used as objective flow pattern indicators. A series of 73 experimental runs have its flow
pattern identified by visual inspection assisted by the analyses of the void fraction’s trace and associated
probability density function. The flow patterns are classified into six groups and labeled as: bubbly,
spherical cap, slug, unstable slug, semi-annular and annular. This work compares and analyzes the per-
formance of artificial neural networks, ANN, and expert systems to flow pattern identification. The
employed ANNs are Multiple Layer Perceptrons, Radial Basis Functions and Probabilistic Neural Network,
with single and multiple outputs. The performance is gauged by the percentage of right identifications
based on experimental observation. The analysis is extended to clustering algorithms to assist the forma-
tion of knowledge base employed during the learning stages of the ANNs and expert systems. The perfor-
mance of the following clustering algorithms: self organized maps, K-means and Fuzzy C-means are also
tested against experimental data.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The flow of a gas–liquid mixture in a pipe is distinguished by
the spatial distribution of the interfaces which separate the phases.
In some flows the interfaces may evolve smoothly along the pipe
while in other flows they assume complex shapes such as ripples,
dendrites, dimples and irregular shapes that resemble fractals. The
interfaces’ shape and area density depend on the flow rates, fluid
properties and pipe’s size and orientation. By their turn, the inter-
faces with different shapes and area densities result in flows with
distinct friction, heat and mass transfer coefficients. The coupling
between the interface’s shape and the interface’s transport coeffi-
cients is one of the challenging aspects in two phase flow.

The development of transport equations to the interface’s geo-
metrical properties are not developed yet. In an attempt to over-
come this deficiency a simpler approach is adopted by grouping
the interfaces accordingly to their topological similarities and asso-
ciating each group to a specific interfacial transfer mechanism to
flow modeling. To classify the interfaces accordingly to their topo-
logical similarities were introduced the flow pattern or flow regime
descriptors. They are based on written descriptions and on graph-
ical illustrations which give a qualitative description of the phases’
ll rights reserved.
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spatial distribution. For example, a set of flow descriptors largely
accepted in the literature for vertical gas–liquid flow is: the bubbly,
the slug, the churn and the annular flow patterns as proposed by
Taitel et al. (1980). The flow pattern identification results from
the comparison of the visual observations against the qualitative
descriptors. The method, based on the viewer’s subjective criteria,
lacks of a measurable quantity or objective parameter to pattern
identification. In fact different viewers may arrive at distinct flow
patterns identifications especially if the flow conditions lay on
transition regions between neighboring patterns.

One of the first attempts to overcome the subjective criteria was
proposed by Jones and Zuber (1975). Using X-rays, they measured
the time-varying mean void fraction on the cross section of a 5 mm
thick rectangular channel and plotted the probability density func-
tion, PDF, of these signals. Noticing the differences in the PDF’s sig-
natures for the distinct flow patterns the authors suggested it
could be an objective flow pattern indicator. Alternatively, Tutu
(1982) measuring the wall pressure fluctuation and the pressure
drop of an upward air–water mixture flowing in a 52.2 mm ID also
found the signal’s statistical moments as objective flow pattern
indicators.

These experimental techniques shaped two broad classes of
methods for objective flow pattern indicators if one follows the
criterion proposed by Drahos and Cermak (1989). One of the clas-
ses is based on the measurement of an energetic parameter: wall
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pressure fluctuation and wall shear stress fluctuation. The other
class considers the measurement of some structural parameter
with different responses to gas and liquid contents: gamma ray
densitometer, electrical impedance method, optical method, ul-
tra-sound and thermal anemometry among others. The develop-
ment along these classes is still an active area nowadays. A brief
survey based on the differential pressure measurements reports
objective flow indicators arising from statistical moments of the
differential pressure fluctuations (Matsui, 1984, 1986); fractal cor-
relation dimension extracted from the fluctuating pressure signal
(Cai et al., 1996); wavelet decomposition of the differential pres-
sure signal (Elperin and Klochko, 2002) and the pressure’s signal
energy level decomposition using Hilbert–Huang transformation
(Ding et al., 2007). Complementarily, a brief survey on the methods
belonging to the second class shows objective flow indicators
deriving from void fraction data. The signals are post-processed
to extract: PDF, signal to noise ratio, spectral analyses and the Ga-
bor’s transform employing impedance probes sampling volumes or
cross section areas (Wang et al., 1990; Costigan and Whalley, 1997;
Song et al., 1998; Hervieu and Seleghim, 1998 and Lowe and Rez-
kallah, 1999); PDF from local resistivity probes (Das and Pattana-
yak, 1993); spatial–temporal distribution of echo intensities from
ultra-sound pulses (Wada et al., 2006); PDF and wavelet analysis
from parallel wire probe’s signal (Jana et al., 2006) and Markov ser-
ies of the local void fraction measured by optical probe (Mahvash
and Ross, 2008).

The reviewed methods primarily transform a temporal signal
into another quantity which more clearly expresses the distinc-
tions among the flow patterns. Despite of the efforts none of these
signal transformations perform satisfactory to flow pattern identi-
fication. In fact the signals are chaotic and governed by a high-or-
der non-deterministic system. Therefore it is very likely that a
single feature, extracted from the raw signal, will not be able to
discriminate the flow patterns clearly. But, maybe, a combination
of several of them will retain most of the data’s original variability
and render a better job as an objective indicator. The analysis of
multiple input parameters faced a challenge on developing map-
ping procedures capable to relate multiple input data to the flow
pattern labels. This difficulty was overcome during the 1990s with
the application of Artificial Neural Networks, ANN, and classifiers
algorithms to flow pattern identification problems.

The flow pattern identification techniques employing ANN are
reviewed considering the applications with differential pressure
transducers and electric impedance sensors as measuring devices.
This choice is based on the increasing popularity of the association
of ANNs with these measurement techniques in contrast to the use
of Support Vector Machine (Tan et al., 2007) or else the use of im-
age analysis of dynamic neutron radiographs videos (Tambouratzis
and Pázsit, 2009). The advantages and disadvantages of the use of
pressure transducers and impedance meters as measuring devices
to flow pattern identification are briefed as follow. The pressure
transducers have a low cost, are well developed, readily available
to a large range of operational pressure and temperature, resistant
to most of fluids and fulfill most of the operational safety regula-
tions. The disadvantages are: the possibility of the pressure tap
clogging, the lack of portability and the fact that the fluctuating
pressure signal is not only dependent on the phases’ distribution
but also on the phaseś velocity. Here portability is defined as the
capability of the ANN to be trained with a sensor or in a scaled
down apparatus and to work similarly with distinct sensor or in
actual size facilities. The impedance sensors have a raw output
signal proportional to the void fraction. This feature, for being
closely related to the flow pattern, demands less computational
effort to map the signal features to the flow pattern. The disad-
vantages are that they are not commercially available neither
are well developed for applications in new scenarios other than
indoor controlled environments operating with mixtures of air–
water or gas–oil.

The following review details the experimental apparatus
including the line size and orientation, the measurement device,
the data acquisition frequency and the sampling window, the
objective flow pattern indicators and the mapping procedures. It
starts with the applications of pressure fluctuating signal to flow
pattern identification. Cai et al. (1994) sampled at 40 Hz the abso-
lute pressure in a horizontal air–water pipe flow during 102.4 s to
extract eight stochastic features. The features related to the ampli-
tude domain were: standard deviation, skewness and kurtosis; the
ones related to the frequency domain included: linear prediction
coefficients and residual errors. The Kohonen self-organizing fea-
ture map, SOM, with eight input neurons was applied to cluster
the input data into four groups corresponding to the slug, intermit-
tent transition, wavy/stratified and bubbly flow patterns. Wu et al.
(2001) took differential wall pressure measurements using piezo-
resistive transducers in a three-phase oil–gas–water flow. The test
section is a horizontal pipe 40 mm ID and 206 pipe diameters long.
The temporal pressure signal was denoised using wavelets and
processed, using fractal theory, to give nine correlation dimen-
sions. An ANN Multi-Layer Perceptron (MLP) having nine neurons
for the input layer, five neurons for the hidden layer and a single
neuron for the output layer was trained employing the back-prop-
agation algorithm enhanced with a least square routine to render
better stability and convergence speed. The network is trained to
identify the stratified, intermittent and annular flow patterns.
The reported misidentification rate is lower than 8%. Xie et al.
(2003) trained an ANN-MLP to flow pattern identification in an up-
ward vertical three phase flow of gas–liquid–pulp fiber mixture.
They used as input data the wall pressure fluctuation signal sam-
pled at 100 Hz to get the standard deviation, the skewness, the kur-
tosis plus seven other terms referring to auto-correlations at
distinct time intervals. Two ANN’s configurations with input, hid-
den and output layers having 10 � 7 � 4 and 10 � 7 � 1 were used
for flow pattern identification. Both ANN-MLP were capable of
identify the bubbly, plug, churn and slug flow pattern with a mis-
identification rate of 7%. Xie et al. (2004) extended the analysis
using the normalized pressure power spectral density, PSD, instead
of the auto-correlations of the pressure signal. An ANN-MLP with
8 � 5 � 1 neurons corresponding to the input, hidden and output
layers, was trained with a six level decomposition of the PSD show-
ing a good discrimination among the flow patterns. The authors
claim that the arrangement of the ANN with the PSD gives a better
portability to the identification system as compared with the pre-
vious work Xie et al. (2003).

The survey is completed with the applications of ANN to flow
pattern identification employing electrical impedance probes as
measuring devices. Mi et al. (1998) employed ANN-MLP and
ANN-SOM to flow pattern identification. A total of 28 runs were
performed in a vertical 50.8 mm ID pipe with air and de-ionized
water. The impedance sensor was installed 60D from the inlet. It
consisted of eight circular electrodes with 9.5 mm diameter uni-
formly spaced along the pipe perimeter flush mounted in a
50.8 mm inside diameter pipe. The signals were sampled at
200 Hz during 60 s. The ANN-MLP had four input nodes corre-
sponding to the mean and standard deviation of the diagonal and
neighboring electrodes. The output layer has a single neuron to
identify four patterns: bubbly, slug, churn and annular. The ANN-
SOM has the same input layer employed by the ANN-MLP but its
output layer has two configurations with four or seven output neu-
rons corresponding, respectively, to the already listed flow pat-
terns or including the transitions between each pattern. Both
types of ANNs with four output nodes show an identification rate
of 96%. The disagreement occurs at points laying on the transition
boundary between slug and churn flow and also between churn



740 E.S. Rosa et al. / International Journal of Multiphase Flow 36 (2010) 738–754
and annular flow. The ANN-SOM with seven output nodes was able
to resolve the transition boundaries and has an identification rate
of 100% out of 28 samples. Yan et al. (2004) extend the concept
developed by Mi et al. (1998) to an electrical capacitance tomogra-
phy aimed to objectively identify gas–liquid flow patterns. It is a
theoretical work in a sense that they numerically simulated the
signals from eight electrodes flush mounted along the pipe rim
through a 2D finite element code. The steady state values of the
eight electrodes are combined in arrangements involving the diag-
onal, adjacent and second adjacent electrodes and expressed by the
mean and standard deviations of the sums of the electrodes. An
ANN-MLP with 10 � 10 � 8 neurons corresponding to the input,
hidden and output layers, respectively, was trained to flow pattern
identification in gas–liquid horizontal flows. The mismatch rate is
of 6.3%. The method is promising but it lacks from experimental
evidence since the actual signals are not steady and the edge ef-
fects existing on finite electrodes are not captured by the 2D
numerical simulations. Hernandez et al. (2006) employed a double
wire needle-contact probe, placed at the pipe center-line, to detect
the bubbles’ cord length in an upward air–water flow. The tests
were in a 50.8 mm ID pipe with the probe placed 67D downstream
of the air–water mixer. The sensor’s signal is sampled at 12KHz, ac-
quired, denoised, normalized, applied to a threshold value tech-
nique and processed to get the interface velocity and the
bubble’s cord length. A total of 125 tests were conducted to cap-
ture the features of five flow patterns: bubbly, cap-bubbly, slug,
churn-turbulent and annular. The resultant cumulative probability
functions of the bubbles’ cords length were selected as input
parameters. Two types of ANNs were used: the PNN and the
SOM together with two data compressing techniques and different
training strategies. The optimized configuration was the ANN-PNN
with 95% of positive identification. Some specific classification
problems were concentrated along the transition between churn-
turbulent and annular flow patterns. Juliá et al. (2008) advance
the work of Hernandez et al. (2006) by measuring the bubbles’ cord
length at three radial positions simultaneously, getting the cumu-
lative probability function and adding the three cord length distri-
butions to extract global flow information instead of a local
information. Juliá employs the same experimental apparatus de-
scribed in Hernandez et al. (2006). The signals were sampled dur-
ing 1960s and self-clustered employing the SOM algorithm. The
ANN-SOḾs sensitivity is explored by clustering data into 3, 4 or
5 categories which, after processing, are labeled according to the
flow pattern labels already listed in Hernandez et al. (2006). When
the data were clustered into five categories the SOḾs algorithm
failed to distinguish between churn and annular patterns. Finally,
Lee et al. (2008) compare the performance of a supervised ANN-
MLP and a non-supervised ANN-SOM in vertical air–water flows
using an impedance meter with multiple electrodes, as described
by Mi et al. (1998). The test section consists of two vertical
pipes with ID of 2.54 cm and 5.08 cm and total lengths of 150D
and 75D, respectively. The impedance probes were placed at 34D
and 63D from the entrance for test sections with 2.54 cm and
Fig. 1. Flow pattern identifi
5.08 cm ID pipes, respectively. The sampling frequency and the
data acquisition period were, respectively, of 100 Hz and 1 s. The
short acquisition period is to allow flow pattern identification in
transient regimes. The raw signal is normalized and sorted, accord-
ingly to its magnitude, to form a sequence of crescent values
resembling a cumulative distribution function. The ordered se-
quence of values is used as input to the ANNs. Both ANNs have
100 input nodes. The architecture of the ANN-MLP has seven hid-
den nodes and five output nodes corresponding to the bubbly,
spherical cap, slug, churn-turbulent and annular flow patterns.
An ANN-SOM is used to cluster the cumulative distribution func-
tions and, in a post work stage, was attributed to each cluster a
corresponding flow pattern label. The representativeness of the
clustered data in regard to the flow pattern was gauged by order-
ing the data into 3, 4 and 5 groups. The ANN-SOM failed to recog-
nize the churn-turbulent and annular patterns in any of these
configurations; as a matter of fact it always grouped them into
the same single cluster. Nevertheless the outputs of the ANN-
MLP agreed with the Mishima and Ishii (1984) transition criteria
for upward gas–liquid flow in vertical pipes.

The reviewed flow pattern identification methods can be sum-
marized into three operational blocks: (i) measuring device, (ii)
signal processing, and (iii) flow pattern identification technique,
see Fig. 1. The measuring device block involves the experimental
apparatus and the transducer type to extract a temporal signal
dependent on the flow pattern. The data processing block has as in-
put/output a temporal series and an objective flow pattern indica-
tor, respectively. The input signal may be submitted to a large
variety of transformations to get objective flow pattern indicators.
The flow pattern identification block maps the flow pattern indica-
tors to a given flow pattern label employing non-linear mapping
techniques with multiple input parameters based on ANN.

The reviewed applications of ANN to flow pattern identification
were successfully accomplished with positive identification rate
higher than 90%. But the diversity of procedures regarding the
measuring device, experimental apparatus, pipe orientation, signal
processing and ANN architectures avoids a direct comparison
among the works. For example, one may consider as a measuring
device the fluctuating pressure or the impedance meters including,
single and multiple electrodes for global or local measurement
which in turn may be non-intrusive or intrusive. Moreover, the sig-
naĺs acquisition frequency and period spanned from 40 Hz to
12 KHz and from 1 s to 100 s, respectively. Also for objective flow
pattern indicator were found as statistical moments, power spec-
tral densities, wavelet decompositions, Hilbert–Huang transform,
PDF, among other types of signal processing. Finally, the employed
ANNs are based on a learning stage such as ANN-MLP, ANN-RBF
and ANN-PNN but also on clustering algorithms such as ANN-SOM.

Beyond the diversity of procedures quoted above, most of the
works does not employ the same flow pattern labels which, in
some circumstances, makes unease to establish a comparison.
For example some authors simply adopt intermittent flows while
others employ elongated bubble and slug. The non-similarities also
cation block diagram.
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arise due to the number of flow patterns, some authors prefer to
employ four groups: bubbly, slug, churn and annular while others
include the transitional patterns adding, at least, two or three more
groups. A fair comparison among the techniques exists if all of
them worked with the same number of flow patterns labels. At last,
some works, due to experimental constraints, test the identifica-
tion techniques over a limited area of the flow map not covering
all possible flow patterns or, with a few number of data samples
in certain flow patterns which may compromise the learning stage
of these techniques.

1.1. Objective

This work main’s objective is to draw comparisons among dif-
ferent techniques employing the same data base. Specifically, it
develops a performance’s analysis of: (i) clustering algorithms;
(ii) mapping techniques and iii) the influence of the input data.

The text organization follows the block structure depicted in
Fig. 1. The description of the experimental apparatus and the intro-
duction of a novel resistivity probe are in Section 2. The instanta-
neous line averaged void fraction is processed to render the first
four statistical moments and its PDF. The data processing and the
flow pattern labeling criteria are in Section 3. Section 4 presents
the flow pattern identification techniques, Section 5 shows the re-
sults and, finally, the conclusions are in Section 6.
Fig. 2. Schematic representation of the experimental apparatus.
2. Experimental apparatus and measuring device

The flow patterns of an upward co-current air–water mixture
were reproduced experimentally in a facility shown schematically
in Fig. 2. A reciprocating compressor and a centrifugal pump sup-
ply air and water to the mixer installed at the entrance of the ver-
tical test section with 26 mm ID and 306D long. At the exit of the
test section there is a long radius U bend which directs the mixture
to a drop leg 75 mm ID. The air and the water are primarily sepa-
rated at the drop leg. The air is freely discharged into the atmo-
sphere by the annular gap between the pipes. The water flows
downward to a collecting tank which, being 1.5 m in diameter,
has a large enough residence time to separate the small air bubbles
eventually carried by the downstream water flow. The water exits
the tank to feed the centrifugal pump in a closed loop. The tests
were conducted at nearly atmospheric pressure of 946 mBar and
ambient temperature of 24 �C ensured by the system water total
volume of 3 m3. Two Merian laminar flow elements with reported
uncertainty of 2% are used to measure the air flow rate within the
range of 0–0.21 Sm3/min and 0–0.65 Sm3/min. The water flow rate
measurement uses two flow meters: a Metroval Coriolis and a Fish-
er Vortex both calibrated at 1½% of uncertainty operating within
the range of 12–55 kg/min and 26–200 kg/min, respectively. The
air and the water flow rates as well as the temperature and pres-
sure were continuously monitored, controlled and registered by
the supervisory system.

2.1. The measuring device

The measuring device is a single-wire resistivity probe placed at
257D downstream of the air–water mixer followed by a straight
transparent Plexiglas pipe to aid the flow pattern visualization.
The probe consists of a bare stainless steel cylindrical rod with
0.6 mm in diameter stretched along the pipe diameter line result-
ing in an area blockage ratio less than 3%. A metallic pipe houses
the cylindrical rod. Sleeves placed at the pipe rim fix the rod at
the pipe providing to the rod mechanical support, electrical insula-
tion and a seal avoiding water or air leakages, see schematic in
Fig. 3a.
The probe’s signal is proportional to the electrical resistance of
the water path established between the wetted area of the rod and
the pipe wall. Furthermore, the rod to pipe diameter ratio of 0.023
constrains the probe’s sensitivity into a small volume concentric to
the rod axis. The sensing volume is approximately described by a
radial distance of nearly two rod diameters with an axial extension
equivalent to the wetted portion of the rod. It is suited to measure
water layer heights in stratified flows, Fig. 3b, but also the equiva-
lent water layer height, EWLH, in dispersed bubbly flows due its
small sensitivity along rod’s the radial direction. The EWLH corre-
sponds to the rod’s wetted axial extension; see Fig. 3c. Addition-
ally, the ratio of the EWLH to the pipe diameter is interpreted as
the line averaged liquid hold-up. The probe’s operational principle
bears similarity to the single-wire capacitive probe described in
Huang et al. (2008).

The probe’s circuit is a voltage divider driven by an oscillator as
depicted in Fig. 4. The oscillator’s output is a 100 kHz sinusoidal
signal with 10 V rms to minimize the polarization effects on the
probe contact surface. The probe’s resistance is a variable resis-
tance represented by Rp; Rp is a constant resistance and the voltage
drop on the probe is Vm. The probe resistance is proportional to the
water resistivity, q, and inversely proportional the EWLH, or sim-
ply ‘:

Rp ¼ qC=‘; ð1Þ

where C is a dimensionless shape factor due to the rod to pipe
geometry. When the tube is full of water Rp takes its lowest value:



Fig. 3. Probe elements (a), representation of the water layer height for stratified flow (b) and the equivalent water layer height for dispersed flow (c).

Fig. 4. Schematic representation of the probe’s driving circuit.
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p ¼ qC=D; ð2Þ

where D is the pipe diameter. Conversely, when the tube is full of
air, ‘ = 0, Rp takes its highest value, Rp � RH

p !1. The voltage drop
on the probe is determined by:

Vm ¼
Ve

ð1þ Rc
Rp
Þ
: ð3Þ

The line averaged void fraction is defined a function of the volt-
age ratio:

e ¼ f
Vm � VL

VH � VL

� �
: ð4Þ

The values for VH and VL are determined by substituting the def-
initions of RH

p andRL
p into Eq. (3). The function f is unknown but e and

the voltage ratio span from 0 to 1. Furthermore, at the extremes,
Vm = VL or Vm = VH, the argument of f and e are coincident, i.e.,
f(0) = 0 and f(1) = 1. Forcing, by design criterion, the ratio
Rc=RL

p 6
1

20; then it is possible to express the voltage ratio as func-
tion of the probe resistances’ ratio which, by its turn is coincident
with the complement of the EWLH or to the line averaged void
fraction itself

Vm � VL

VH � VL

� �
ffi 1�

RL
p

Rp

 !
� 1� ‘

D

� �
� e: ð5Þ
3. Signal acquisition, processing and labeling

This section presents: the raw signal, the post processing tech-
nique, the flow pattern descriptors, and the definitions of the train-
ing and test data sets.
3.1. Raw signal acquisition

The voltage drop on the probe, Vm, is sampled at a 3 kHz for a
period of 60 s for each run using a National Instruments acquisition
board SCXI-1308. The sampling frequency is 10–20 times higher
than the highest frequency component of the signal assuring all
signaĺs information is preserved. Certainly it is possible to work
with a lower sampling rate but a study of the optimum sampling
frequency is considered out of the scope of this work. The sampling
period is of 60 s. This value guarantees representative data samples
for all analyzed flow patterns and, in particular, to the intermittent
flow patterns which present the lowest frequencies, typically from
1 Hz up to 10 Hz in this experimental facility. The 60 s period as-
sures data samples with at least 60 liquid pistons followed by elon-
gated gas bubbles. A short analysis employing double and triple
acquisition periods for slug flow pattern disclose changes on the
first four statistical moments less than 1%. The data is post-pro-
cessed to compensate eventual changes on the water resistivity
due to temperature or ion concentration changes during the tests.
For reference the trace of the instantaneous line averaged void
fraction, e, typical of each flow pattern are displayed in Fig. 5.

3.2. Signal processing technique

The trace of the line averaged void fraction is processed to ren-
der the signal’s first four statistical moments as well as the signaĺs
PDF, see Fig. 5. The choice of the statistical moments or the PDF in
place of other type of signal’s transformation is because they are
physically attached to the shape of the void fraction distribution
which, by its turn, is closely related to the flow pattern, Jones
and Zuber (1975).

The spanning interval of the line averaged void fraction,
0 6 e 6 1, is divided into 300 bins. The discrete occurrences of e
in each bin are smoothed (Bowman and Azzalini, 1997) to get an
estimate of the PDF. The use of a PDF instead of a histogram proved
to be more efficient to the flow pattern identification because the
smoothing technique allows a PDF with stable shape while the his-
togram’s shape is sensitive to the number of bins.

3.3. Experimental data classification criteria and flow pattern
descriptors

A human specialist identified the flow patterns by combining
visual information, either by naked eye or aided by digital high



Fig. 5. Typical line averaged void fraction traces, PDFs, and statistical moments. M, Std, Skw and K stand for mean, standard deviation, skewness and kurtosis of the line
averaged void fraction.
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speed photographs, with the analysis of the instantaneous line
averaged void fraction and its PDF. The second approach comple-
ments the visual observations since the instantaneous readings
of e gives information on how e changes with time while its PDF
discloses the most observed values during the time series. Similar
approaches have been used by Costigan and Whalley (1997), Song
et al. (1998), and Omebere-Iyari et al. (2008), for example.

The flow patterns are classified into six groups: bubbly flow,
spherical cap flow, slug flow, unstable slug flow, semi-annular flow
and annular flow instead of the established four groups: bubbly,
slug, churn and annular flow patterns. A visual identification of
each flow pattern is on Fig. 6. The choice of six instead of four
groups is to capture, more clearly, the transitions regions between
adjacent flow patterns. Furthermore, the usage of churn as flow
descriptor is replaced by the unstable slug flow and semi-annular
flow to avoid ambiguity often associated with it, see for example
Jayanti and Hewitt (1992), Hewiit and Jayanti (1993) and Costigan
and Whalley (1997).

The flow patterns descriptors are as follows.
The Bubbly flow encompasses the representation of mono-dis-

persed bubbles as well as bubble clusters also known by discrete
bubbles. The first sub-pattern applies to bubbles with uniform
sizes describing rectilinear trajectories with no interaction
between neighboring bubbles. The clustered bubbles represent
bubbles with a non-uniform size and non-spherical shapes describ-
ing a zig-zag trajectory. The trace of e ranges oscillates within



Fig. 6. Test section photographs of upward air–water flow exhibiting the visual flow patterns features: (a) bubbly; (b) spherical cap; (c) slug; (d) unstable slug; (e) semi-
annular and (f) annular.
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0.025 up to 0.4 with a mean value always lower than 0.1. The cor-
respondent PDF has a sharp peak, with positive or null skew
depending if there are bubble clusters or not. For reference Fig. 5
exhibits a time record window of 2 s and the associated PDF corre-
sponding to discrete bubbles flow pattern. Although, not observed
during the experimental tests, there is also a third classification for
the bubbly flow pattern: the churn-turbulent bubbly flow. It con-
sists of highly agitated distorted bubble clusters with several pipe
diameters of axial length characterized by single peaked PDF with
null or positive skew. This flow pattern is found on large diameter
pipes, see Omebere-Iyari et al. (2008), but also is related to the en-
trance phenomena occurring near the pipe inlets.

The Spherical Cap flow is characterized by bubbles which may
take partially the pipe cross section in a capped void, as originally
described in Davies and Taylor (1950). Once the cap bubbles are
formed, the trailing cap catches up and coalesces with the leading
cap ultimately leading to a short Taylor bubble. The trace of e has
large oscillations between 0.1 and 0.8 with typical mean value
within 0.1 and 0.2. The PDF has a small peak if compared with
the bubbly flow and a large positive skew. A typical trace and
PDF of the spherical cap flow is shown in Fig. 5. Usually the spher-
ical cap flow is grouped with the clustered bubbly flow, Taitel et al.
(1980).

The Slug flow is viewed as the succession of aerated liquid pis-
tons followed by an elongated bullet shaped gas bubbles, often
called by Taylor bubbles, flowing up surrounded by a liquid film.
The persistence of the signal at low or high values of e corresponds
to the transit of a liquid slug or a gas bubble by the sensor. The
intermittent flow nature is clearly distinguished by the trace be-
cause the signal is either low or high with stepwise transition be-
tween states. The PDF has two peaks in correspondence with the
gas and liquid occurrences. As an example Fig. 5 brings the trace
and PDF of a typical slug flow signature. As a final remark, slug flow
is also called by plug flow although, for horizontal flows, some
authors make distinctions between plug and slug accordingly to
the bubble’s tail shape (Ruder and Hanratty, 1990; Fagundes Netto
et al., 1999).

The Unstable Slug flow was designated after Costigan and
Whalley (1997) as a flow pattern succeeding the slug flow when
the gas flow rate increases. This designation is not unique; usually
it is referred as churn flow, churn-turbulent flow or also as froth
flow. But, these flow patterns have broader signification in a sense
that they mean not only the slug transition when the gas flow rate
increases but also the transition to the annular regime. One of the
first to distinguish these two sub-patterns were Hewiit and Jayanti
(1993). They propose the use of churn-slug and churn-annular as
the transitional patterns between the slug and the annular flow.
The unstable slug is characterized by highly aerated liquid pistons
trailed by gas bubbles surrounded by aerated liquid film. Most of
the time the gas bubble and liquid piston structures are preserved
but, sometimes, the liquid slug between neighboring bubbles may
collapses at high flow rates. The falling liquid content is drained
downward and eventually is intercepted by an upward liquid pis-
ton. The chock between these two streams introduces chaotic flow
disturbance with an oscillatory or churn motion of the liquid in the
tube followed by a loss of integrity of the elongated bubble. This
regime persists until the gas flow is high enough to break down
all of the slugs and distribute their content in the form of waves
on annular film. The high speed mixture has gas–liquid structures
several pipe diameters long. The velocity and the length of the flow
structures avoid visual identification of the whole unit by naked
eye due to the high velocity and also prevent to capture it in a sin-
gle frame of a high speed camera due to its length. Usually only a
fraction of the piston or the bubble is observable making hard the
identification employing only images, one has to rely on the anal-
ysis of the line averaged void fraction’s trace and its PDF. The void
fraction trace oscillates from 0.2 to 0.8 but it does not show a def-
inite range for high and low as the slug flow. The loss of integrity of
the gas bubble followed by the increase of the gas content on the
liquid film as well as on liquid slug prevents the signal to change
from low to high in a step-wise way. Instead, intermediate values
of e, i.e. 0.4 < e < 0.6, happens more frequently causing the PDF val-
ues, between the two peaks, be no longer negligible, see Fig. 5.

The Semi-Annular flow is the term often used to the existing flow
pattern between the unstable slug and the annular flow, Azzopardi
and Hills (2003). It is considered a degenerated form of annular
flow with large interfacial waves with the liquid film direction
changes. A typical trace and PDF of this flow pattern is shown in



Table 2
Percentage flow pattern occurrence on the experimental, training and testing data
sets.

Flow pattern Exp. Training Testing runs
Runs (%) Runs (%) Runs (%)

Bubbly flow 6 8 5 10 3 13
Spherical cap 13 18 4 8 2 9
Slug flow 20 27 9 18 4 17
Unstable slug 22 30 14 28 6 26
Semi-annular 4 5 15 30 7 30
Annular 8 11 3 6 1 4

Total 73 100 50 100 23 100
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Fig. 5. The trace of e still shows large oscillation between 0.4 and
0.9 but occurrence of the high values of e prevails and the expected
mean values range from 0.7 to 0.8. The PDF is single peaked with a
large skew toward low values of e.

The Annular flow is characterized by a core with high velocity
gas–droplets mixture surrounded by a co-current liquid film. The
liquid film is occasionally interrupted by disturbance waves which
leaves their footprint on the time trace of e as short duration peaks
ranging from 0.4 to 0.95. The expected mean values is always high-
er than 0.8. The PDF is single peaked with skew toward the low val-
ues of e, see trace and PDF in Fig. 5. Although, not observed in this
work, it is added, for completeness, a second flow pattern belong-
ing to the annular type flow: the wispy-annular flow. It is charac-
terized by an agglomeration of liquid in the gas core causing the
formation of streaks or wisps of liquid due to an increase on the li-
quid velocity at a given gas velocity, Hewiit and Hall Taylor (1970).

3.4. The experimental data set

Seventy-three runs with air and water superficial velocities
spanning, respectively, from 0.1 m/s to 30 m/s and from 0.20 m/s
to 3.0 m/s have their flow patterns identified. The data correspond
to the flow conditions found at 257 pipe diameters downstream
the air–water mixer and have their statistical moments displayed
in Table 1 as a form to convey information regarding the line aver-
aged void fraction PDF. The first column displays the run number-
ing. The second and third columns bring, respectively, the in situ
superficial velocities of the liquid and gas phases, JL and JG. The
mean, the standard deviation, the skewness and the kurtosis of
Table 1
Experimental data set. JL and JG are the water and the air superficial velocities. M, Std, Skw
void fraction, e. BB, SC, SS, US, SA and AA stands for bubbly, spherical cap, stable slug, uns

Run # JL (m/s) JG (m/s) M Std Skw K Flow pattern R

1 1.21 0.67 0.19 0.22 1.41 3.50 SC 3
2 0.36 1.00 0.57 0.38 �0.35 1.29 SS 3
3 0.59 0.99 0.47 0.37 0.05 1.20 SS 4
4 1.23 1.08 0.27 0.26 0.89 2.17 US 4
5 0.38 1.53 0.65 0.35 �0.77 1.83 SS 4
6 0.64 1.63 0.54 0.34 �0.29 1.33 SS 4
7 1.20 1.51 0.34 0.28 0.52 1.59 US 4
8 0.34 2.56 0.70 0.28 �1.12 2.76 US 4
9 0.64 2.38 0.60 0.31 �0.60 1.69 US 4

10 1.21 2.34 0.43 0.28 0.14 1.38 US 4
11 0.35 4.20 0.75 0.22 �1.36 4.00 US 4
12 0.66 4.00 0.67 0.27 �0.93 2.44 US 4
13 1.16 3.74 0.54 0.28 �0.31 1.46 US 5
14 0.30 6.69 0.77 0.16 �1.19 4.90 SA 5
15 0.61 6.27 0.71 0.22 �1.28 3.82 US 5
16 1.15 6.00 0.61 0.26 �0.66 1.93 US 5
17 0.58 12.07 0.79 0.16 �1.50 5.56 SA 5
18 1.20 8.79 0.68 0.24 �0.87 2.44 US 5
19 0.35 0.28 0.37 0.35 0.44 1.40 SS 5
20 0.33 0.57 0.43 0.37 0.16 1.20 SS 5
21 0.31 0.86 0.54 0.37 �0.28 1.27 SS 5
22 0.33 1.10 0.58 0.35 �0.49 1.46 SS 5
23 0.30 1.63 0.64 0.32 �0.80 1.94 SS 6
24 0.59 0.26 0.27 0.32 0.84 1.93 SS 6
25 0.61 0.52 0.30 0.33 0.68 1.68 SS 6
26 0.61 1.02 0.46 0.35 0.06 1.23 SS 6
27 0.90 0.26 0.21 0.26 1.07 2.41 SC 6
28 0.88 0.77 0.33 0.30 0.53 1.54 SS 6
29 1.18 0.25 0.17 0.21 1.42 3.42 SC 6
30 1.24 0.45 0.19 0.22 1.23 2.93 SC 6
31 1.18 0.71 0.26 0.25 0.80 2.00 SC 6
32 0.29 0.23 0.23 0.32 0.97 2.23 SS 6
33 0.54 0.30 0.26 0.32 0.88 2.00 SS 7
34 0.49 0.19 0.23 0.31 0.97 2.19 SS 7
35 0.52 0.49 0.30 0.35 0.65 1.60 SS 7
36 0.79 0.36 0.22 0.28 1.01 2.26 SS 7
37 0.29 0.14 0.10 0.20 1.67 4.26 SC
the line averaged void fraction are displayed along the 4th until
the 7th column. Finally the flow patterns are labeled on the 8th
column. The letters BB, SC, SS, US, SA and AA stand for bubbly,
spherical cap, stable slug, unstable slug, semi-annular and annular
flow patterns. The 73 data points are considered with enough var-
iability and representativeness to apply to flow pattern identifica-
tion techniques. Table 2 brings, for convenience, the percentage of
occurrence of each flow pattern on the experimental data set. The
flow patterns are not uniformly distributed along the six labels;
57% of the runs correspond to the stable slug and unstable slug pat-
terns. This feature is justified because these flow patterns are likely
to occur over a large range of liquid and gas velocities on the flow
map, see Fig. 7 where symbols with the same shape represent the
same flow pattern. The distinction between open and solid
symbols is to identify the data belonging to the training and to
the testing data sets to be defined on the next section.
and K stand for mean, standard deviation, skewness and kurtosis of the line averaged
table slug, semi-annular and annular flow patterns.

un # JL (m/s) JG (m/s) M Std Skw K Flow pattern

8 0.60 0.13 0.06 0.14 2.11 5.73 SC
9 1.21 0.12 0.02 0.06 3.69 16.45 BB
0 2.22 0.15 0.04 0.03 5.66 41.88 BB
1 3.08 0.17 0.06 0.01 3.57 31.88 BB
2 0.61 0.21 0.10 0.19 1.50 3.53 SC
3 1.18 0.20 0.04 0.10 2.52 8.07 SC
4 2.16 0.26 0.06 0.05 3.27 14.6 BB
5 3.05 0.27 0.06 0.03 4.33 26.9 BB
6 1.20 0.55 0.11 0.19 1.29 3.00 SC
7 2.12 0.51 0.11 0.10 1.97 6.16 SC
8 2.98 0.51 0.10 0.05 2.73 11.7 BB
9 1.25 1.09 0.22 0.24 0.56 1.62 US
0 2.13 1.02 0.21 0.18 1.37 3.66 SC
1 2.95 1.03 0.17 0.09 1.90 6.58 SC
2 0.30 2.02 0.54 0.27 �0.95 2.44 SS
3 0.63 1.88 0.44 0.29 �0.40 1.55 SS
4 1.24 1.83 0.30 0.25 0.10 1.34 US
5 2.13 1.86 0.33 0.22 0.80 2.20 US
6 2.92 1.72 0.25 0.13 1.51 4.77 US
7 2.09 3.05 0.41 0.20 0.31 1.62 US
8 2.85 3.03 0.39 0.19 0.94 2.65 US
9 2.03 5.34 0.52 0.19 �0.18 1.53 US
0 2.78 4.75 0.47 0.19 0.41 1.76 US
1 0.59 9.76 0.65 0.14 �1.24 5.21 SA
2 1.28 9.47 0.66 0.16 �1.13 3.17 US
3 1.99 8.09 0.59 0.18 �0.51 1.92 US
4 2.69 7.71 0.56 0.18 �0.05 1.66 US
5 0.23 20.6 0.81 0.09 �0.99 3.55 AA
6 0.22 21.1 0.80 0.09 �0.92 3.48 AA
7 0.35 17.6 0.76 0.10 �0.67 3.09 AA
8 0.65 16.7 0.79 0.09 �1.48 6.93 AA
9 1.2 15.2 0.78 0.11 �1.94 7.51 AA
0 2.09 12.4 0.72 0.14 �1.18 3.58 SA
1 0.23 28.3 0.87 0.06 �1.09 3.77 AA
2 0.62 28.8 0.84 0.07 �1.04 4.67 AA
3 1.20 22.8 0.82 0.09 �1.94 8.57 AA



Fig. 7. Flow map having the water and the air superficial velocities on the y and x
axes. Solid lines represent the boundaries defined by Taitel et al. (1980). Open and
filled symbols represent data belonging to the training and to the testing data sets,
respectively. Symbols: r – BB; } – SC; q – SS; 4 – US; h – SA; s – AA (bubbly,
spherical cap, stable slug, unstable slug, semi-annular and annular).
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The consistency of the flow patterns labels is checked against
the flow map given by Taitel et al. (1980) in Fig. 7. To establish a
comparison it is necessary to reduce the six identified patterns to
the four patterns proposed by Taitel et al. (1980), i.e., the bubbly
and spherical cap patterns correspond to Taitel’s bubbly flow and
the unstable slug and semi-annular patterns correspond to the Tai-
tel’s churn flow. Considering this correspondence among flow pat-
tern labels it is observed, in overall, a good agreement between the
experimental data and the map. As expected, the misclassifications
happen at the boundaries of the patterns where the identification
criteria become fuzzy. In particular the region where misclassifi-
cation rate is higher rests where the three boundary lines merge.

The experimental data consistency is also observed on the evo-
lution of the line averaged PDF as the water and the air velocities
Fig. 8. Evolution of the line averaged void fraction PDFs as the w
change as seen on Fig. 8. The x and y coordinates are, respectively,
the air and the water superficial velocities. The x and y position
where the PDF lays correspond, approximately, to the same super-
ficial velocities as indicated by the x and y axes. Consider, for exam-
ple, the effect of the increase on the air superficial velocity. At low
air velocities is observed the spherical cap regime displaying a PDF
single peaked with positive skew, #37. As the air velocity increases
the pattern changes to the slug flow and further on it changes to
the unstable slug, both with bimodal PDFs, see points #20 and
#8. Additional increases on the air velocity causes the semi-annu-
lar and the annular flow regimes corresponding to single peaked
PDFs with negative skew, points #14 and #71. The increasing of
the water velocity always reduces the line averaged void fraction
but its effect on the PDF depends on the air velocity. For example,
at the lower range of JL and JG it is observed the spherical cap re-
gime, point #37. As the water velocity increases the PDF skewness
is progressive reduced and eventually approaches a symmetrical
distribution found in the bubbly regime, point #40. Alternatively,
one can also build a figure, similar to Fig. 8, employing the first four
statistical moments and reach similar conclusions.

3.5. Training and test data sets

Before developing the flow pattern identification techniques it
is convenient to define the training and the testing data sets. The
training set is the source of knowledge to the identification tech-
niques; it demands a large number of elements to create a repre-
sentative base. Complementary, the test set is used to assess the
performance of the identification techniques. The original data
set is split into two sub-sets with approximately 70% and 30% of
the data corresponding to the training and test sets, respectively.
There are no data repetition between the two sets in such a way
that the union of the two sub-sets result on the original data set.

The training and test sets have, respectively, 50 and 23 ele-
ments carefully chosen to guarantee the variability and representa-
tiveness of the original data. Both sets are identified by their run
ater and air superficial velocities change along the flow map.



Table 3
Training and testing data sets numbering, see data characterization on Table 1.

Training data set numbering, # Testing data set numbering, #

2 18 32 46 61 1 29 65
3 19 34 48 62 6 33 72
4 22 35 49 63 8 38 73
5 23 36 50 64 10 40
7 24 37 51 66 15 45
9 25 39 53 67 16 47

11 27 41 54 68 17 52
12 28 42 55 69 20 57
13 30 43 56 70 21 59
14 31 44 58 71 26 60
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numbering on Table 3 and exhibit the same percentage of occur-
rence of each flow pattern which also coincides, approximately,
to the one found on the original experimental data set, see Table
2. The representativeness between the two data sets is appreciated
by superposing the PDF curves belonging to each set and observing
the similarity between the curves’ envelope shown in Fig. 9.

4. Flow pattern identification techniques

The flow pattern identification techniques map an objective
flow indicator to a flow pattern label, see schematic on Fig. 10.
Two types of objective flow pattern indicators are used: the first
Fig. 9. Superposition of the PDF́s shapes (a) training data set

Fig. 10. Schematic representation of the identifi
four statistical moments and the PDF, both based on the instanta-
neous readings of line averaged void fraction. The use of one indi-
cator or the other is defined along the context. The output is the
classification of the given objective flow indicator to a correspond-
ing flow pattern label.

The mapping procedures demand a knowledge base, KB, neces-
sary to the learning stage of the identification techniques. The KB is
formed either by a human specialist or with the aid of clustering
algorithms which group the data accordingly to topological
similarities.

Two types of flow pattern identification techniques are em-
ployed: the artificial neural networks and expert systems. The fol-
lowing sections describe in detail the adopted procedures to the
establishment of the knowledge base and the identification
techniques.

4.1. Knowledge base, KB

The success of the identification techniques relies on how rep-
resentative is the knowledge base regarding the data universe. If
the knowledge base does not convey representative information
of the data or even worse, if it has conflicting information, the out-
come of the identification techniques may be impaired. The em-
ployed KB consists of 50 data belonging to the training set
displayed on Table 3. Each data must be associated to a flow pat-
tern label. If this procedure is done by a human specialist the KB
with 50 curves and (b) testing data set with 23 curves.

cation technique and the knowledge base.
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is referred to KB-HS. On the other hand, if the data are first grouped
by a clustering algorithm and in a second step each group is labeled
by a human specialist it is referred to KB-CA. There are differences
between these two procedures, the most apparent is on the fact
that the human specialist procedure is intrinsically subjective
while the KB formed with the aid of clustering algorithms is free
from subjective criteria. The next sections brief these procedures.

4.1.1. Knowledge base based on human specialist – KB-HS
A KB-HS is based on a subjective evaluation of the data similar-

ities. The analysis is not based on a single parameter. The human
specialist searches for similarities among the temporal series of
the line averaged void fractions and the associated PDFs, cross cor-
relate this information with the flow descriptors and with the ex-
pected qualitative behavior of the void fraction value. The selected
50 data points are identified on Table 3, labeled by a human spe-
cialist on Table 1, displayed on flow map in Fig. 7 and have the per-
centage of occurrence of each pattern shown on Table 2. The
disadvantage of this procedure is the degree of subjectiveness
inherent to the specialist judgment. It also demand large amount
of time to properly classify since the information belonging to each
data has to be analyzed individually as well as in clusters to prop-
erly label each point to a specific flow pattern.

4.1.2. Knowledge base based on clustering algorithm – KB-CA
The data clustering algorithms group the objective flow pattern

indicators by establishing topological similarities. These tech-
niques are often called as non-supervised because they are capable
to form knowledge bases free from subjective judgment. The hu-
man specialist’s function is to associate each group to a specific
flow pattern, but the data clustering is performed autonomously.
Fig. 11 represents the formation of a KB-CA, based on PDFs, in
two steps. The first step clusters the PDF curves into six groups
based on existing topological similarities among the PDFs. This task
is performed by an autonomous clustering algorithm. Step II asso-
ciates each cluster to one of the six flow pattern labels. This task is
done by a human specialist.

Three clustering algorithms are employed: Kohonen self orga-
nized map, K-means and Fuzzy C-means which are represented
Fig. 11. Formation of a knowledge base assisted by clustering techniques. Step I – PDF
as SOM, KM and FCM, respectively. A short description of these
techniques follows.

K-means – KM – is a simple unsupervised learning algorithm to
solve the clustering problem based on the minimum Euclidian dis-
tance from a given curve to another curve which represents the
clusteŕs centroid. The procedure classify a given curve set into k
clusters, here k equals to six representing the flow patterns. The
main point is to define k centroids, one for each cluster; it is done
iteratively. The initial guesses for the k centroids is an arbitrary
choice of k curves which are as distinct from each other as possible.
The next step is to take each curve in a given curve set and connect
to the nearest centroid. At the end of this procedure will be formed
the first k groups with similar curves. A new centroid is determined
and the whole procedure is repeated in a loop until a convergence
criteria is reached (MacQueen, 1967).

Self Organized Maps – SOM – is an ANN which preserves the data
similarities employing a competition strategy. The main objective
of the self organized maps is to group topologically similar data
(Kohonen, 1982). The Euclidian distance is used as a measure of
similarity among the vectors. The non-supervised learning stage
consists of weight adjustments based on the input data similarity.
The employed SOM is a two-dimensional ANN with two neurons’
layers. The output layer has six neurons corresponding to the cho-
sen flow patterns. The winner takes all strategy activates only one
neuron, detailed information is found in Kohonen (2001).

Fuzzy C-means – FCM – solve the clustering problem based on
fuzzy criteria to determine the minimum Euclidian distance from
a given curve to another curve which represents the clusteŕs cen-
troid. Generally speaking it is a fuzzy K-means. The K-means meth-
od associates each curve to a specific cluster, i.e., the classified
curve has no pertinence degree to neighboring clusters. Sometimes
this classification strategy does not work well if the transitions
from one type of cluster to the other occur continuously as it hap-
pens with the flow patterns. The FCM overcomes this deficiency
employing fuzzy logic to establish the degree of pertinence of each
curve to the k groups. The method defines a pertinence matrix U
where the elements ui,j represent the degree of pertinence of curve
i to the j group. The degree of pertinence of the FCM method con-
veys more information to the output than the KM method. As an
clustering by autonomous algorithm. Step II – group labeling by human specialist.
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example consider the classification of a given PDF. The KM method
classify the curve as belonging to the bubbly flow pattern but the
FCM output would assign, for example, 0.7 to the bubbly flow pat-
tern and 0.3 to the spherical cap pattern. The pertinence degree of
single PDF to multiple flow patterns gives information about tran-
sitional zones. The FCM’s theory and implementation details are in
Bezdek (1981) and He (1998).
4.2. Flow pattern identification techniques

The flow pattern identification techniques are supervised sys-
tems which have a learning stage based on the knowledge base,
see schematic in Fig. 10. The employed supervised techniques in-
clude artificial neural networks and expert systems which are de-
tailed on the next sections.
4.2.1. Artificial neural networks – ANN
Three types of ANN are applied to flow pattern identification:

the multiple layer perceptron, MLP; the radial base function, RBF
and the probabilistic neural network, PNN. The ANNs share some
similarities which will be described beforehand. The input vectors
may be either the statistical moments or the PDFs. The former re-
quires ANN with four neurons at input layer while the last uses 300
neurons. Certainly the last number can be reduced without much
loss of information using, for example, principal component analy-
sis (Jolliffe, 1986), but the optimization of the input dimension was
considered out of the scope in this work. This subject is approached
in an alternative way in Section 5.3. The ANN’s output layer can
have a single or multiple neurons, SO or MO, respectively.

The ANN with single or multiple neurons at the output layer has
its value within 0 and 1 normalized on [0, 1] by applying the logsig
function. Fig. 12 represents schematically the ANNs with SO and
MO architectures having as input vectors the PDFs. The correspon-
dence of the output layer’s neurons to the flow pattern label is also
given in the figure. For SO architecture the output is divided into
six intervals having each interval corresponding to a flow label.
The MO architecture has each output neuron corresponding to a
flow label. Specific features of MLP, RBF and PNN are briefed on
the following paragraphs.

Multi-layer Perceptron ANN-MLP – is frequently employed for
pattern recognition tasks. The neurons are connected in a feed-for-
ward fashion via multiplicative weights and arranged in a weight
matrix W. The MLP must be trained with the KB data to find the
appropriate values for the elements in matrix W, given the number
of neurons in the hidden layer. The employed learning algorithm is
the error back-propagation, Rumelhart et al. (1986). More details of
MLP are found in Bishop (1995).

Radial Basis Function ANN-RBF – are particularly designed to
non-linear function approximations. Originally proposed by
Broomhead and Lowe (1988), they have three layers. The neurons
Fig. 12. ANN schematic representation. Input layer having the PDFs.
within each layer are fully connected to the neighboring layers
similarly to an ANN-MLP. The hidden layer is defined by a set of ra-
dial basis functions which give the name to this type of ANN. The
learning stage is equivalent to the fitting of a surface to a set of data
in a multi-dimensional space constrained by a statistical criterion.
The ANN-RBF are capable to map non-linear functions with just
one hidden layer which is an advantage in regard to the required
number of hidden layers in ANN-MLP, Bishop (1995). This superior
performance is not always achieved due to the algorithms to find-
ing the optimum number of hidden neurons as well as their ampli-
tudes and centers which frequently settle in local sub-optimum
configurations, Bishop (1995).

Probabilistic Neural Networks ANN-PNN – are known for exhibit-
ing a high learning level which result in a classification rate as good
or superior to the ANN-MLP. Originally developed by Specht
(1990), the ANN-PNN is based on Bayes decision strategy and on
Parzen’s method of PDF approximation, Friedman et al. (1997).
The ANN-PNN act like a feed forward network similar to the
ANN-MLP with four neuron layers with radial basis Gaussian func-
tions. The similarities to the ANN-MLP extend to: capability of non-
linear mapping, generalization character and parallelism. One of
the advantages of the ANN-PNN is in the estimate of the pertinence
degree upon which its decision is based. One of the disadvantages
is the fact that ANN-PNN demand more computational resources
than ANN-MLP.
4.2.2. Expert systems ES
Expert system is an algorithm that attempts to reproduce the

performance of one or more human experts in a specific problem
(Hayes-Roth et al., 1983). A wide variety of methods can be used
in expert systems; however, the most frequently employed are
the so-called conditional structures of the type ‘‘if-then-else” con-
nected and interlinked with some objective. Each structure form a
rule and the rules’ combination create the inference process of the
expert system model. The set of rules are capable to store several
types of information and can represent many problems in several
applications. The inconvenience of this methodology is the rule
creation and encoding process that, depending of the problem,
can became cumbersome (Giarratano and Riley, 1994 and Water-
man, 1986).

The input vector is represented by Sj. It is proposed an inference
process in two stages. The first stage determines the Euclidian dis-
tance, 1

i, from the input vector, Sj, to each vector Pi,j belonging to
the KB, as shown by

Di Pi;j; Sj
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX300

j¼1
Pi;j � Sj
� �2

r
; 1 6 j 6 300: ð6Þ

The indexes i and j represent, respectively, the number of vec-
tors and the vector dimension. The range of index i is 1 6 i 6 50
due to the size of the training set; considering the PDFs as the input
Output layers with (a) single neuron and (b) multiple neurons.



Fig. 13. Schematic representation of the expert system employing as input vector the PDFs.
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vector the range of index j becomes 1 6 j 6 300. The second stage
determines the minimum of 1

i as a way to find the most similar
vector Pi,j to the input Sj. Due to the geometrical similarity between
the two vectors the method infers that both vectors have the same
flow pattern, i.e., Sj receives the same flow pattern label of the Pi,j

vector which resulted on the minimum of 1
i. A schematic represen-

tation of the expert system having as input vectors the PDFs is in
Fig. 13 including the inference set of rules and KB.
4.3. Summary

The developed identification techniques are associated with in-
put vectors and knowledge bases which need to be properly iden-
tified for further references. This section addresses this issue by
listing the employed techniques.

Four methods are employed to establish the knowledge base:
one is a KB-HS and the three others are based on KB-CA. These
methods resulted in distinct knowledge bases which are identified
in Table 4.

Three types of ANN are used, each one with two architectures:
single and multiple output neurons resulting in a total of six dis-
tinct ANN’s. For comparison purposes the ANNs are all linked to
a single knowledge base, the KB-1. Additionally there are the ex-
pert systems which have the same inference algorithm, see Section
4.2, but are associated with four distinct knowledge bases. The
number of identification systems amounts to 10 if one considers
the distinct principles, architectures and knowledge base associa-
tions. All configurations employ as input vectors the PDFs of the
line averaged void fraction. The exception applies to an additional
case where an ANN-MLP with multiple outputs has as input the
statistical moments. Table 5 summarizes the identification
techniques, input vectors and knowledge bases.
Table 4
Methods employed to the knowledge base formation.

# Name Short name Knowledge base

1 Human specialist HS KB-1
2 Kohonen self org. map SOM KB-2
3 K-means KM KB-3
4 Fuzzy C-means FCM KB-4
5. Results

The performances of the clustering algorithms and identifica-
tion techniques are gauged in two ways. The first measures the
percentage of right identification achieved by a specific identifica-
tion technique, PRIT, when submitted to the testing set. The second
gives the percentage of right identification received by a specific
data point, PRIP, when submitted to all identification techniques.
The PRIT figure gives an idea of how accurate the identification
technique is while the PRIP show how a specific data point is pre-
dicted by different identification techniques. The PRIT and PRIP fig-
ures are evaluated accordingly to:

PRITðkÞ ¼ 100
Xn

i¼1

Vi;k and PRIPðiÞ ¼ 100
Xm

k¼1

Vi;k; ð7Þ

where the indexes i and k identify, respectively, a data point and a
identification technique while Vik can be 1 or 0 if the identification
of the ith point employing the kth technique is right or wrong,
respectively. Considering, for example, the first 10 identification
techniques shown in Table 5 the testing set has n = 23 and the iden-
tification methods have m = 23 which result in spanning intervals of
1 6 i 6 23 and 1 6 k 6 10, respectively.

The next three sections explore the results of the clustering
algorithms, flow pattern identification techniques and the influ-
ence of downsizing the input data.

5.1. Clustering algorithms

This section presents the classification of the training data set
into six groups using the KM, SOM and FCM clustering algorithms.
The inputs are the PDF of the line averaged void fraction. The clus-
tering algorithms were tested several times to assure repeatability
better than 95%. These algorithms were implemented in a 2.2 GHz
dual core machine using MATLAB� R14 V.7.0|SP3. The conver-
gence was achieved in less than 1000 cycles with approximately
2 s of cpu.

The resultant flow pattern classification is on Table 6. The first
column displays the experimental run. The second column displays
the classification given by the human specialist. The next three col-
umns show the labels obtained by KM, SOM and FCM algorithms.



Table 5
Flow pattern identification techniques, input vectors and associated knowledge base.
SO and MO stands for single and multiple output layer; SM means statistical
moments.

# Type/name Input vector Knowledge base

1 ANN-MLP-SO PDF KB-1
2 ANN-MLP-MO PDF KB-1
3 ANN-RBF-SO PDF KB-1
4 ANN-RBF-MO PDF KB-1
5 ANN-PNN-SO PDF KB-1
6 ANN-PNN-MO PDF KB-1
7 ES-1 PDF KB-1
8 ES-2 PDF KB-2
9 ES-3 PDF KB-3

10 ES-4 PDF KB-4
11 ANN-MLP-MO SM KB-1
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It is noteworthy to observe on Table 6 that among the mis-
matched cases there are 17 cases common to all algorithms, i.e.,
the three algorithms show the same flow pattern which is distinct
of the flow pattern indicated by the human specialist. As an
example run #50 is classified as SC pattern but all three algo-
rithms classify the same point as SS pattern. Also run #70 is
found to be SA pattern while the three algorithms indicate AA
pattern. The additional triple mismatched points are: {24, 25, 5,
35, 36, 4, 7, 54, 55, 56, 58, 49, 63, 64, 39}. With the aid of Table
1 it is possible to place these points on the flow map, see Fig. 7,
and identify two sub-data sets: one characterized by points which
lay on the transitional boundaries {4, 7, 24, 36, 49, 50, 53, 55, 58,
63, 64, 70} and the other characterized by non-transitional points
{5, 25, 35, 39, 56}.

The factors which lead to the mismatches on transitional points
are:

(a) The three algorithms search for similarities among the data
set based on the minimum Euclidian distance between vectors.
This strategy is successful when the features of each cluster are
clearly distinguishable. But, the flow pattern features do not
change in a step-wise way from on pattern to the other; on the
contrary, the features change continuously making it harder to
the clustering algorithms to work with the transitional points.
(b) The human specialist knowledge base, KB-1, is built based
on subjective criteria which, intrinsically, impart some uncertainty
on the classification process that is difficult to gauge. To remedy
this inherent deficiency the data is extracted from an experimental
setup largely employed in the literature: a vertical one inch pipe
with an air–water mixture flowing upward. The experimental flow
pattern data displays a favorable comparison with the flow map
predictions as well as with the reported data on the literature,
see Section 3.4;

(c) Clustering techniques are sensitive to the number of groups,
Juliá et al. (2008) and Lee et al. (2008). Maybe fewer groups, for
example: bubbly, slug, churn and annular see Taitel et al. (1980),
may result in an improvement on the method́s performance. The
techniques are also sensitive to the number of samples of each pat-
tern. Imbalanced data set may favor some specific groups than the
others. Unfortunately the training data set has nearly 60% of sam-
ples for SS and US patterns and 13% for SA and BB patterns. Signif-
icant improvements on the outcomes are observed in tests where
the training data set is trimmed to a balanced number of samples
to each flow pattern label.

(d) Finally, the number and the choice of the experimental runs
to build the training set may have an impact on the clustering
methods. Despite of the attempt to have the experimental data
uniformly distributed on the flow map, it is possible that data
points laying on distinct areas of the flow map may result in better
performances. Furthermore no data swap between the training and
testing data set was done. This task would increase in many orders
the analysis work involving the three clustering methods.

Despite of the plausible causes justifying the existence of mis-
match at transitional points they cannot support the existence of
mismatches on non-transitional points. The misclassifications are
inconsistencies of the methods very likely associated to items (a)
and (c). For completeness, the results in Table 6 show a percentage
of right identification for the KM, SOM and FCM algorithms of 46%,
50% and 62%, respectively. These scores apply to the 50 PDFs
belonging to the training data set.

This analysis, although limited, is not favorable to the clustering
methods as a tool to identify the six flow patterns. This result can
be enhanced if the algorithms still distinguish six groups but the
results are shown in a reduced number of flow patterns. The choice
of six flow pattern was intentionally used as a form to explore the
transitional points. But there are many other forms to form flow
pattern groups; see for example a short review on the literature
from 1936 up to 1987 for the proposed flow patterns labels in Sam-
aras and Margaris (2005). This work explores the use of two of
them. The first consists of the four flow patterns proposed by Taitel
et al. (1980): the bubbly, the slug, the churn and the annular flow
patterns. The correspondence among the used six flow patterns to
the Taitel’s flow patterns was already described in Section 3.4. The
identification of only four flow patterns increases the percentage of
right answers to 80%, 82% and 88% when considering the KM, SOM
and FCM algorithms, respectively. The second choice considers
only three flow patterns: the bubbly, the intermittent and the
annular flow patterns. The equivalence among the six flow pat-
terns to this new partition is as follow: the bubbly flow remains
the same for both; the intermittent flow encompasses the spherical
cap, stable slug and unstable slug flows and finally the annular
flow corresponds to the semi-annular and annular flows. The iden-
tification of three flow patterns rises the percentage of right iden-
tifications to 88%, 92% and 96% considering, respectively, the
algorithms: KM, SOM and FCM. Reducing the number of flow pat-
terns greatly enhance the algorithms performance by relaxing the
need to classify transitional points. In all three scenarios the FCM
algorithm had a slightly better performance than the other two
algorithms.
5.2. Flow pattern identification techniques

Expert systems and ANN are employed as flow pattern identifi-
cation techniques, both using as input vectors the PDFs. The expert
systems, for being conceptually simple, do not have any particular
set up detail to be declared but some specific set up features of the
ANNs are given on the following lines. The ANN-MLP has the num-
ber of neurons on the hidden layer and the momentum term esti-
mated through an extensive search on the {5, 20} and {0.01, 0.99}
domains, respectively. Furthermore, the bounds for the number of
neurons were found employing the Baum-Haussler metric (Baum
and Haussler, 1989). The initial learning rate of the weights was
of 0.001. During each epoch a one-dimensional search was con-
ducted to get the next weight value (Groot and Würtz, 1994 and
Bromberg and Chang, 1992). The ANN-RBF and ANN-PNN were
built with six neurons or centers on the hidden layer. These neu-
rons were estimated through the FCM clustering algorithm applied
to the training data set. The learning stage of all ANN was per-
formed before 1000 epochs with a convergence time always less
than 5 s. During the testing stage, the flow pattern identification
was achieved in less than 50 ms. The procedures were setup in a
2.2 GHz dual core machine using MATLAB� R14 V.7.0|SP3.

The results of the identification techniques are shown on Table
7. The letters R and W implies a right or wrong identification. The



Table 6
Clustering algorithms results having the PDFs as input vectors.

Run # Specialist KM SOM FCM Run # Specialist KM SOM FCM

27 SC SC SC SC 9 US US US US
42 SC SC SC SC 11 US US US US
31 SC SS SS SS 12 US US US US
37 SC SC SC SC 13 US SA SS US
30 SC SC SC SC 18 US US US US
43 SC SC SC SC 54 US SS SS SS
46 SC SC SC SC 55 US SS SS SS
50 SC SS SS SS 56 US SS SS SS
51 SC BB SC SC 58 US SS SS SS

2 SS US SS SS 49 US SC SC SC
3 SS SS SS SS 62 US AA AA SA

34 SS SC SC SS 63 US SA SA SA
19 SS SS SS SS 64 US SA SA SA
32 SS SC SC US 14 SA US US SA
22 SS US US SC 61 SA SA SA SA
23 SS US US SS 70 SA AA AA AA
24 SS SC SC SC 66 AA AA AA AA
25 SS SC SC SC 67 AA AA AA AA
28 SS SS SS SS 68 AA AA AA AA

5 SS US US US 69 AA AA AA AA
35 SS SC SC SC 71 AA AA AA AA
36 SS SC SC SC 39 BB SC SC SC
53 SS SA SA SS 41 BB BB BB BB

4 US SS SS SS 44 BB BB BB BB
7 US SS SS SS 48 BB BB BB BB

752 E.S. Rosa et al. / International Journal of Multiphase Flow 36 (2010) 738–754
first and second columns have the run identification and the flow
pattern label. The outputs are along 3rd to the 12th columns. The
13th column displays the percentage of right identification per
point, PRIP, while at the table’s last line is the percentage of right
identification per method, PRIT.

All expert systems, ES-1 thru ES-4, employ the same inference
principle but distinct knowledge bases, see definitions on Table
4. Despite of the differences on the KB, the expert systems exhib-
ited mismatches only for the intermittent patterns: SC, SS and
US. In particular for ES-1 system the mismatches occurred at tran-
sitional points. On the other hand, the ES-2, ES-3 and ES-4 systems
exhibited triple mismatches on transitional and non-transitional
points, see data {33, 31, 15}. The observed percentage of right iden-
Table 7
Results of the flow pattern identification techniques having the PDFs as input vectors.

Run # Label ES-1 ES-2 ES-3 ES-4 MLP
SO

40 BB R R R R R
45 BB R R R R R

1 T SC R R R R W
29 SC R R R R R
38 SC R R R R W
47 SC R W R R R
33 SS R W W W R
21 SS R W W W R
26 SS R W R R R
20 SS R R R R R

6 SS R W R R R
52 SS W W R R W

8 US W R W W R
10 US R R W R R
15 US R W W W W
16 US R R W W R
59 US R R R R R
57 US R R R R R
60 US R R R R R
17 SA R R R R R
65 AA R R R R R
72 AA R R R R R
73 AA R R R R R

PRIT (%) 91 70 74 78 83
tification per method is of 91%, 70%, 74% and 78% for the ES-1, ES-2,
ES-3 and ES-4, respectively. The method’s percentage of right iden-
tification is sensitive to the choice of KB. The highest score come
with ES-1 system due to the use of a KB based on human specialist.
The use of clustering algorithms to assist the process of creating
the knowledge base resulted in a poorer performance. This result
was already expected since the clustering algorithm did not per-
form well to cluster the 50 PDFs of the training data set. But, at
the same token, it surprises because the performance of the ES-2,
ES-3 and ES-4 systems stayed above the performance of the clus-
tering algorithms. In fact, the percentage of wrong identifications
delivered by the clustering algorithms during the KB formation
does not cause, necessarily, large disturbances on the performance
RBF PNN MLP RBF PNN PRIP (%)
SO SO MO MO MO

R R R R R 100
R R R R R 100
R R W R R 80
R R R R R 100
R R R R R 90
R R R R R 90
R R R R R 70
R R R R R 70
R R R R R 90
R R R R R 100
R R R R R 90
W W R R R 50
R R R R R 70
R R R R R 90
W W R R R 40
R R R R R 80
R R R R R 100
R R R R R 100
R R R R R 100
W R R R R 90
R R R R R 100
R R R R R 100
R R R R R 100
87 91 96 100 100
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of expert systems when they are submitted to the testing data set.
This is supported by the fact that the KB and the testing set have
distinct PDFs. Furthermore, the former has a greater number of
points laying on transitional zones which increases the odds of
mismatches. The expert systems, despite of being simple, have per-
formance comparable to single output ANNs if the KB-1 is
employed.

The ANN with single output neuron is the next category to be
analyzed. The percentage of right identification per technique is
of 83%, 87% and 91% for MLP, RBF and PNN, respectively. For rank-
ing purposes it is considered that the three techniques have similar
performance. The small differences among the techniques might
result from the number of samples where the ANN were trained
and tested. The mismatches occurred at transitional points.

Finally, the last category to be analyzed is the ANNs with multi-
ple outputs. The percentage of right identification per technique is
of 96%, 100% and 100% for MLP, RBF and PNN. Compared with the
previous techniques, the ANNs with multiple outputs have supe-
rior performance. The ANN-MLP misidentified only the point #1
which lay on a transitional zone. The RBF and PNN identified cor-
rectly the 23 points of the testing base. The performance of these
three techniques are also considered equivalent. Due to its superior
performance the ANN with multiple outputs are recommended for
flow pattern identification.

The analysis of the percentage of right identification per point
shows points {52, 15} as having the lowest scores, 50% and 40%,
respectively. These points are identified as transitional points lay-
ing between SS-US and US-SA patterns, respectively. Their exis-
tences reassure the difficulties that these techniques have to
identify transitional points.

The outcomes from the identification techniques are also ana-
lyzed considering the percentage of right identification per flow
pattern. Table 8 shows this information by displaying on the first
column the flow patterns and on the subsequent columns the iden-
tification techniques. The last column displays the averaged score
per flow pattern. The figures correspond to the percentage of right
identification considering the number of testing samples to the gi-
ven flow pattern. The Expert systems and the ANNs with single
output have the lowest identification scores to the SS and US pat-
terns. Two factors contribute to the lowest scores. The first is be-
cause the SS and US patterns are similar. The second factor is
related to the lack of proportionality on the testing data set. The
SS and US patterns correspond to nearly 60% of the whole data
set. On the other hand, ANNs with multiple outputs have no iden-
tification problems.

5.3. Downsizing input data to flow pattern identification

The use of PDF as input vectors with 300 dimensions may result
in redundancy of information. Instead of searching for an opti-
mized input vector size it was decided to explore the first four
statistical moments as the new input vectors.

The use of the first four statistical moments is based on the fact
that they convey information regarding the appearance of the PDF
Table 8
Percentage of right identification per flow pattern and per technique having the PDFs as t

Flow pattern ES-1 ES-2 ES-3 ES-4 MLP
SO

BB 100 100 100 100 100
SC 100 75 100 100 50
SS 83 17 67 67 83
US 86 86 43 43 86
SA 100 100 100 100 100
AA 100 100 100 100 100
as well. The mean provide information on the location. The stan-
dard deviation gives the variability or dispersion. These first two
moments are often recognized as scale parameters because they
are related to the shift and stretching/shrinking, a typical function
of scale parameters. The third and fourth moments are associated
with the shape of the distribution. The skewness is related to the
lack of symmetry of a PDF while kurtosis is associated with the
‘‘peakedness” of the PDF.

Based on this heuristic reasoning, an ANN-MPL is implemented
having 4 � 10 � 6 neurons at the input, hidden and output layers,
respectively. The inputs are the first four statistical moments and
the output are the flow patterns labels. The training and testing
data sets are the same defined on Table 3 but instead of using
PDF they employ the statistical moments defined on Table 1. The
learning rate and the momentum term are of 0.03 and 0.6. The
training stage has 1000 epochs with a convergence time less than
1 s.

The outcome of the ANN-MLP with multiple outputs when sub-
mitted to the testing data set achieved 100% of right identifica-
tions. The result show that the first four statistical moments
convey equivalent information to the ANN as the PDFs do with
the advantages of using a simpler ANN and avoiding the need of
pre-processing the input vectors to render the PDF.

6. Conclusions

The clustering algorithms have, in average, 53% of right identi-
fications to group the training data set into six flow patterns. This
poor performance is due to the inability of the clustering algo-
rithms to handle transitional data points. The algorithms’ perfor-
mance improves when the number of identified flow patterns is
reduced. For example, if one chooses to classify only three flow
patterns: the bubbly, the intermittent and the annular flow, the
average of the percentage of right identification rises to 92%. They
are useful tools to assist the formation process of the knowledge
base having in perspective that their performance decreases as
the number of flow patterns increases.

As far as the identification methods are concerned, the ANN’s
proved to be an efficient tool to flow pattern identification. The
best results are achieved for ANN architecture with multiple out-
puts. The tested ANN configurations, MLP, RBF and PNN exhib-
ited equivalent performance with percentage of right answers
ranging between 96% and 100%. The expert systems are concep-
tually simpler than the ANN and still have a performance equiv-
alent to the ANN with single output. Like the ANNs the expert
system demands a knowledge base which in turn has an influ-
ence on the method’s performance. The influence of the knowl-
edge base on the performance of the expert system was
explored. The best results come from knowledge base build by
a human specialist. The knowledge base assisted by clustering
algorithms result in expert systems with poorer performances.
In overall the expert systems are promising tools to flow pattern
identification due to its conceptual simplicity, development cost
and computational speed.
he input vector.

RBF PNN MLP RBF PNN Mean
SO SO MO MO MO

100 100 100 100 100 100
100 100 75 100 100 90

83 83 100 100 100 78
86 86 100 100 100 82

0 100 100 100 100 90
100 100 100 100 100 100
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Finally, the success of the developed flow pattern identification
system rests on the balanced assemblage among measuring device,
signal processing and identification technique. The use of the resis-
tivity probe with a relative output voltage linearly proportional to
the line averaged void fraction resulted in a good objective flow
pattern indicator. This characteristic seems to be a decisive factor
because the use of the PDFs or the first four statistical moments
is equivalent as far as the mapping procedure is concerned. Fur-
thermore, the identification is well accomplished with ANN with
multiple neurons at the output layer regardless of the ANN’s prin-
ciple (MLP, RBF or PNN). The application of the statistical moments
as input vector is recommended for being simple to extract and
also easy to set up an identification system based on ANN.
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